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Interplay between the Hawking effect and the quasi-normal modes of a one-dimensional sonic
horizon in a polariton fluid
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Analogue gravity enables the laboratory study of the Hawking effect, correlated emission at the horizon. Here,
we use a quantum fluid of polaritons as a setup to study the statistics of correlated emission. Dissipation in the
system may quench quasi-normal modes of the horizon, thus modifying the horizon structure. We numerically
compute the spectrum of spatial correlations and find a regime in which the emission is strongly enhanced while
being modulated by the quasi-normal modes. The high signal-to-noise ratio we obtain makes the experimental
observation of these effects possible, thus enabling the quantitative study of the influence of dissipation and of
higher order corrections to the curvature on quantum emission.

Quantum fluctuations at the event horizon of black holes
cause the emission of correlated waves by the Hawking effect
(HE) [1]: while some waves (Hawking radiation) propagate
away from the horizon to outer space, others (the partner ra-
diation) fall inside the horizon. Since signaling from inside
the horizon is impossible, only Hawking radiation may be de-
tected and correlations between paired waves cannot be mea-
sured in astrophysics. The HE may also be observed in the
laboratory thanks to analogue gravity setups [2, 3]]. These are
media whose properties may be engineered such that waves
within propagate on effectively curved spacetimes [4} 3], as
has been experimentally demonstrated in a variety of plat-
forms [6H17]]. For example, there is a horizon for sound waves
in a one-dimensional transsonic fluid where the flow velocity
of the fluid equals the speed of sound. The HE at the sonic
horizon yields the emission of correlated waves just like in as-
trophysics [4, 3]], with the notable difference that observation
on both sides of the horizon is possible.

Experimental evidence for correlated emission at horizons
was recently reported in analogue gravity setups based on
classical [18] and quantum fluids [[19]]. While the thermal fluc-
tuations of classical fluids overpower quantum fluctuations
at the horizon such that spontaneous emission cannot be ob-
served there, this can be done with quantum fluids. Sponta-
neous emission would yield a non-separable state at the out-
put [20H29]], whose degree of entanglement could be quanti-
fied from the density and correlation spectra [30} 31].

Although most work on spontaneous emission has been
dedicated to atomic Bose-Einstein condensate (BEC) ana-
logues [32H40], correlated emission with comparable prop-
erties may also be observed in quantum fluids of micro-
cavity exciton-polaritons (polaritons) where a sonic horizon
has already been experimentally realised in one- and two-
dimensional microcavities [[L1, 41]. In both quantum fluids,
the Hawking effect manifests itself as the emission of so-
called Bogoliubov excitations (elementary excitations of the
fluid whose kinematics are ruled by its dispersion) that prop-
agate in opposite directions on either side of the horizon.

In this paper, we explore the parameter space of quantum

fluids of polaritons to find a regime favourable to the forma-
tion of correlations by the HE. The hydrodynamics of the fluid
are controlled by its density and phase, which are in turn con-
nected with the optical bistability of the system (the hysteresis
cycle of its polariton-density-to-optical-power relationship),
and so we investigate spontaneous emission from this perspec-
tive. We study the influence of the regime of bistability on
either side of the horizon on the properties of emission by the
Hawking effect. In doing so, we also find that, besides yield-
ing correlated emission by the HE, quantum vacuum fluctu-
ations also perturb the horizon that rings down. This linear
response of the perturbed horizon is understood in terms of
damped resonances called quasinormal modes (QNMs) [42-
44]]. These are complex frequency modes whose real and
imaginary parts correspond to their oscillation frequency and
lifetime, respectively. To date, QNMs have only been ob-
served in two-dimensional rotating flows [45]. They have also
been studied in the context of large amplitude perturbations
destabilising the horizon and the so-called black-hole laser in
one-dimensional conservative quantum fluids [46H49]], but it
is the first time they are observed in a driven-dissipative fluid.
Here we show that dissipation quenches these modes which
form atmospheres (higher order corrections to the curvature
of the effective spacetime) on either side of the horizon, thus
modulating correlated emission by the HE. Fine control upon
the regime of bistability provides us with a better understand-
ing of the influence of the properties of the quantum fluid
of polaritons on the propagation of Bogoliubov excitations as
well as on emission by the HE therein. Our results open the
way to the experimental observation of spontaneous emission
from the vacuum in polaritonic systems and to further study
of fluctuation-driven instabilities of sonic horizons.

Sonic horizon in a polariton fluid Our study is based on
the experiment [11]: the physical device is a GaAs microcav-
ity sandwiched between a pair of planar Bragg reflectors with
alternating \/4 layers of GaAs/AlGaAs. An InGaAs quan-
tum well is inserted in the microcavity layer, whose thickness
is chosen so that the cavity mode is resonant with the quan-
tum well excitonic transition to obtain polaritons. The micro-



cavity is elongated over 500 pm in one direction and kept to
a constant transverse width of 3 um to form a wire in which
the polariton dynamics are effectively one-dimensional. As
in [[L1} 150, I51]], we pump the microcavity with a continuous
wave, coherent pump laser incident at a given angle with re-
spect to the normal to form a stationary flow along the wire.
However, instead of using a Gaussian spatial mode, we struc-
ture the light field to pump with a step-like intensity profile. In
the region where the pump lies, the density and phase proper-
ties of the polariton fluid are set by those of the pump, while in
the region where the pump intensity is zero, polaritons propa-
gate ballisticaly. As in [11}51}152], we consider a cavity with
an attractive defect (a localised 1 um long broadening of the
wire to a width of 5.6 um) placed downstream of the region
where the pump lies. The defect at x = 0 will create a dip
in the fluid density and a spike in the flow velocity because
of the conservation of the flow current. The density profile
of the polariton fluid \/hgn/m (hg the interaction energy, n
the mean-field density of polaritons, m their effective mass)
is shown in blue in Fig.[T] (c) in laboratory frame coordinates
x and t. We see that the polariton density is almost flat before
the defect and decreases afterwards. The polariton dynamics
are driven-dissipative: polaritons have a lifetime ~y after which
they de-excite, releasing a photon that leaks out of the cavity,
enabling the direct monitoring of the density and phase of the
fluid.

In Appendix[A] we review the theory for polariton hydrody-
namics in a homogeneous system as described by a modified
Gross-Pitaevskii equation (GPE). There we show how the po-
laritons behave as a fluid and describe the dispersive proper-
ties of elementary (or Bogoliubov) excitations therein. These
depend on the effective detuning between the pump energy

. Rk
hwy, and that of polaritons /g, A, = wp — wo — 5.2, where

kp is the wavenumber of the pump field. In the case w, > wo
A, > 7\/3/2), the steady-state GPE is
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with F, the laser field. The equation of state (I)) describes the
bistable behaviour of the fluid [S3]: as shown in Fig. [1| (a),
there is a hysteresis relationship between gn and |F), %, which
we will henceforth refer to as the ‘bistability loop’.

The kinematics of Bogoliubov excitations of the fluid are
governed by the dispersion relation. In Appendix |Al we cal-
culate and study the properties of the dispersion relation as a
function of A, in the frame co-moving with the fluid at veloc-
ityv = %8;80. Here we write the dispersion relation w in the

laboratory frame (where measurements are made) by means of
a Galilean transform (w” — wvdk, with 6k = k — k,):

hok? hok?
wh(k) = i\/(Ap o Sgn) (Ap o gn)

+vdk — iv/2.
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The dispersion relation (2)) depends on both the density n and
the velocity of flow v of the fluid [54].

The case of interest is that of a transsonic fluid flow, that
is a flow which goes from being sub- to supersonic with a
sonic horizon (v = ¢,) at x = 0 [S3)]. This is the canonical
‘waterfall configuration’ of the transsonic flow studied in the
analogue gravity literature with quantum fluids. The waterfall
is composed of two homogeneous regions of different density
(and hence speed of sound) and phase (and hence flow veloc-
ity). The region where the flow is subsonic is upstream of, or
outside, the horizon. The region where the flow is supersonic
is downstream of, or inside, the horizon.

In Fig.[T] we plot the dispersion relation (2)) of the inhomo-
geneous fluid in the laboratory frame for two different pump-
ing strengths when pumping at point C' of the bistability loop.
Blue (orange) curves correspond to positive (negative) energy
solutions of Eq. (AT0) in the frame co-moving with the fluid.
As usual in field theories in analogue gravity, the modes with
positive (negative) energies in the rest frame of the fluid have
positive (negative) Klein-Gordon norm [56]]. For subsonic
fluid flows, the negative norm branch is at negative laboratory
frame energies, while for supersonic flows, part of the nega-
tive norm branch is pulled up to positive laboratory frame en-
ergies by the Doppler effect, up to a maximum energy which
we denote by wnqy-

Now that we have described the dispersive properties of the
inhomogeneous fluid, we consider the kinematics of Bogoli-
ubov excitations therein. Because of the time invariance of
the system, these are plane wave modes. Eq. (2) is a fourth-
order polynomial, so there are four (positive laboratory-frame
frequency) solutions to the equations of motion in each spa-
tial region on either side of the interface. These solutions are
found at the intersection point of an wy = cst line with the dis-
persion branches at positive energies in Fig.|1| Although these
solutions share the same w (which manifests energy conserva-
tion in the laboratory frame), they have distinct k, i.e. they
are local modes of the homogeneous system. For w > 0 in
the upstream region there are two propagating modes of pos-
itive norm and two modes of complex w and k, which are
exponentially growing and decaying modes. For w < wyax
in the downstream region, there are four propagating modes,
two of which have positive norm while the other two have
negative norm. For w > w4, there are two propagating
modes of positive norm and two exponentially growing and
decaying modes. The interface at x = 0 is a sonic horizon
only at frequencies for which there are two propagating lo-
cal modes in the upstream region and four propagating local
modes (including negative-norm modes) in the downstream
region [33, 56, 57], i.e., for w € [0, Wyaz). In Appendix
we explain how to construct the “global modes” (GMs) of the
inhomogeneous system (including the waterfall).

Before moving on to the calculation of spontaneous emis-
sion at the horizon, we remark that, in reality, the media on
either side of the interface are not strictly homogeneous. In-
stead their density and phase vary in space. Nevertheless, if
the amplitude of these variations is small, the description of
the system as two media remains valid, only one has to cal-
culate the dispersion and bistability at all points. However,
this renders an analytical calculation overly lengthy (if at all
possible), unlike in [35/ 156} 57]]. So, instead of calculating the
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Figure 1. Properties of a transsonic polariton fluid flow. (a) bistability loop obtained from Eq. (I). (b) fluid properties when supporting the
fluid density and phase in the upstream region at point C' of the bistability loop. Black, pump intensity; red, fluid velocity; blue, /fign/m. (¢c)
corresponding Bogoliubov dispersion relation of the inhomogeneous fluid in the laboratory frame. Left (right) column, dispersion relation (2)
for a subsonic (supersonic) fluid flow. Blue, positive-norm branch; orange, negative-norm branch. Circles, local modes of positive group
velocity; filled dots, local modes of negative group velocity. Dot-dashed line, wy,q2; dashed line wo.

scattering matrix analytically, we use the Truncated Wigner
Approximation (see Appendix [B) to evolve the wave function
and obtain the properties of the fluid at all points in the cavity
as well as the dynamics of the Bogoliubov excitations therein.

Enhanced Hawking effect We now perform simulations
with the cavity parameters of [L1]: &y = 0.047meV, hg =
0.005meVum, m = 3 - 10~°m,. In Appendix we study a
variety of configurations of pump spatial profile, wavenumber
and intensity and we observe the influence of the regime of
density of the fluid (optical bistability) on spontaneous emis-
sion at the horizon and propagation in either region thereafter.
In doing so, we can explain that the configurations [[11}51}152]
limit the emission of Bogoliubov excitations because of oper-
ation with inhomogeneous profiles far from the sonic point
of the bistability loop in the upstream region. In Fig. [2} we
show the two-point correlations g(®)(z,z’) — 1 for the opti-
mal configuration, which is when the density and phase of the
fluid in the upstream region are homogeneously supported in
the bistable regime, specifically at point C in Fig.[I| (a). In
all configurations, correlations may be sorted by the region
in which the involved modes propagate, which correspond to
four quadrants in the plots. The South West quadrant (z < 0,
2’ < 0) corresponds to correlations in the upstream region;
the South East and North West quadrants correspond to corre-
lations across the horizon in the up- and downstream regions;
the North East quadrant corresponds to correlations in the
downstream region. All configurations have some common
features, which are evident in Fig. @

- Anti-correlations along the = = 2’ diagonal — self cor-
relations of the fluid.

- A negative correlation trace in the upstream-
downstream region corresponding to Uour — d20ut
correlations, the so-called ‘Hawking moustache’.

- A positive correlation trace in the upstream-
downstream region corresponding to Ugyt — dloyt
correlations.

- A positive correlation trace in the downstream-
downstream region corresponding to d1,,; — d2,,; cor-
relations.

- Fringes, both in the upstream-downstream region and in
the downstream-downstream region. See Appendix

- Strictly horizontal (x’ = 0) and strictly vertical (x = 0)
fringes. These have not been observed before.

Except for the last item, these are all generic features of the
Hawking effect in dispersive quantum fluids, see eg [32, 40,
51,152,156} 58]l

In the configuration of Fig. 2] the fluid density is supported
near the sonic point in the upstream region, with k,, =
0.25um ™!, up until 10um before the horizon, where the
strength of the pump drops to zero. Thereafter, the fluid is left
to evolve ballistically across the horizon into the downstream
region. The Hawking moustache is of amplitude 7.5-10~% and
is about 35 pm- and 105 ym-long in the up- and downstream
regions, respectively. The wg,; — dl,,: correlations are of
amplitude 2.5 - 10~* and the trace is 25 um and 105 um long
in the up- and downstream regions, respectively. At long dis-
tances, both up-downstream correlation traces become disper-
sive. The d1,,¢ — d2,, correlations are of amplitude 6 - 10~4
and the trace is 110 pm long.

Fig. |2| resembles the configuration [52f, where the pump
was also structured to obtain a flat fluid density in the
nonlinear-bistable density regime. In [52], just like in all other
configurations considered in Appendix [C] there is no effective
cavity between the edge of the pump and the horizon (unlike
in [[11,151]). Yet, unlike in Fig. E], the Hawking moustache is
short, with a total length of about 25 pm whereas we obtain
a total length of over 110 um. We note that we obtain sim-
ilar downstream-downstream correlation patterns to [52], so
the difference does not lie in the physics in that region. In
fact, the fluid accumulates before the horizon: as can be seen
in Fig. 2| there is a small but non-negligible bump of width
about 7 um in the fluid density just before the horizon. If, as
in [52] the fluid density is already at or above the sonic point
before that bump, then the density rises such that it is far in
the non-linear regime just before the horizon. In contrast, in
Fig. [2) the density is supported at the sonic point in the up-
stream region, and the pump stops 10 um before the horizon
such that the accumulation of fluid brings the fluid density
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Figure 2. Spatial correlations ¢‘® (z,z’) — 1 in the quantum fluid.

on the bump at the sonic point as well. Given the enhanced
trace length compared with [52]], we postulate that operating
at the sonic point upstream of the horizon enhances the prop-
agation of Bogoliubov excitations in that region. We confirm
this in Appendix [D] where we study the influence of the fluid
properties near the horizon on spontaneous emission: we find
that Bogoliubov excitations are emitted in the upstream re-
gion as long as the fluid density is supported on the upper
branch of the bistability loop in the vicinity of the horizon.
We also demonstrate that operating at exactly the sonic point
there strongly enhances spontaneous emission and, in turn,
propagation in the upstream region.

Hawking radiation and quasinormal modes We now turn
to the new interference patterns observed in Fig.[2] Since these
features develop strictly horizontally and vertically, they cor-
respond to correlations between a propagating mode with a
mode whose group velocity is zero. Whence these features
signal the excitation of a mode localised near the horizon.
The parts of the horizontal and vertical features that go from
2 = 0 towards z < 0 and 2’ < 0 are correlations between
the localised mode and the Hawking radiation (ug,¢) in the
upstream region, while the parts that go towards > 0 and
2’ > 0 are correlations of the same localised mode with the
partner wave (d2,,;) in the downstream region. So the lo-
calised mode resonates with outgoing Bogoliubov excitations:
it is a long-lived trapped mode that couples to a propagating
mode, i.e., a quasi-bound state of the horizon [43]]. These are
predicted to occur in particular for massive fields around Kerr
and Schwarzshild black holes [59-61]).

We have verified that the fluid density barely evolves within
2+ before the steady-state is reached, meaning that we do
operate in the linear regime of interactions. This implies
that these localised modes may only be populated by quan-
tum fluctuations of the vacuum that perturb the horizon in
addition to generating correlated waves by the Hawking ef-
fect. The ringdown frequency of the horizon is obtained by
reading out the wavenumber of propagating modes that res-
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Figure 3. Relaxation of the horizon. Blue, peak height of the state
bound to the horizon in time after the impact of the wavepacket on
the horizon. Orange, exponential fit.

onate with the quasi-bound state on either side of the horizon,
ky, = —0.645pum~"! and k4o = 0.985um~!. These share
a frequency w = Re(w?) = 0.7697ps~!. In Fig. [3| we
show the result of the excitation of the horizon by an incoming
wave packet: instead of letting solely the vacuum impinge on
the horizon, we send in an additional, small amplitude wave
packet (a classical coherent wave) of frequency Re(w? ) com-
ing from the upstream region. We observe the relaxation of
the horizon, that is the evolution of the density at the hori-
zon as a function of time and we see that it oscillates with
frequency Re(w;"2 ) while damping down exponentially. This
damping is a measure of the negative imaginary part of the
complex frequency of the mode, Im(wi@ ) = —0.04212ps~ L.
We have also observed the coupling of this mode with an out-
going wave packet on each side of the horizon, confirming
the quasi-bound nature of this excited state. We have varied
the frequency of the incoming wave packet and observed that
the ringdown was not significantly affected. So the oscillation
frequency Re(wiQ ) is the characteristic ringdown frequency
of the horizon, and the observed localised mode is a quasi-
normal mode (QNM) of the horizon. Spatially, the bound part
of the QNM is located near the horizon at x = 0 and the trans-
verse width of the horizontal and vertical correlation features
indicate that it extends over 10 um.

The oscillating pattern of the strictly horizontal and vertical
features is due to a phase difference between the bound part
of the QNM and the outgoing modes, while their diagonal in-
clination implies that the QNM does not have a purely stand-
ing wave shape but oscillates in time. Note that the anoma-
lous modulation of the correlations in both the up- and down-
stream region stem from these fringe patterns, so the QNM
effectively modulates correlated emission by the Hawking ef-
fect [62]]. Because of the simultaneous spontaneous excitation
of correlated waves and QNMs in the two regions, the latter
modify the Hawking spectrum: the frequency distribution of



the Bogoliubov excitations emitted upstream will not smooth
as in conserved quantum fluids [40], but will exhibit peaks at
the frequencies Re(w? ) of the QNMs and with widths give by

Im(w? ). As a result, the QNMs increase the Hawking emis-
sion, which is in turn dominated by Bogoliubov excitations of
frequencies Re(wiQ ). This is similar to the phenomenology
observed in eg [48]], but the source here is different: the insta-
bility of the black hole results from a dissipative quench and
not from two-boundary interactions.

Discussion We showed how engineering the density of
a quantum fluid of polaritons can enhance the emission and
propagation of paired Bogoliubov excitations in a transsonic
flow. Our work sheds light on the interplay between optical
bistability and parametric amplification in fluids of light. The
bistable behaviour of a system can thus be exploited to study
field theoretic effects like the Hawking effect in the laboratory.

Here we observed the generation and propagation of paired
Bogoliubov excitations of the quantum fluid on either side of
a sonic horizon when supporting the density of the fluid at var-
ious points in the bistable regime. Support of an inhomoge-
neous fluid density and velocity may be achieved by changing
the wavenumber of the pump. In an experiment, this is eas-
ily implemented with high spatial resolution (limited by the
diffraction limit) thanks to spatial light modulators [63]. We
found that supporting the density of fluid at the turning point
of the bistability loop (the sonic point) yields Hawking corre-
lations of the order of 10~ of the fluid fraction over more than
100 um. These are a tenfold and a four- to tenfold enhance-
ment, respectively, compared to previous results and render
the observation of the HE realistic.

Furthermore, we observed quasi-normal modes of the
horizon, which manifest themselves as a quasi-bound mode
in the steady state. Differently from [45, |64], the physics
we observe here in the steady-state takes place after the
ringdown phase and the horizon instability is initially driven
by vacuum fluctuations and not a classical perturbation. In
other words, quantum fluctuation at the horizon not only
yield pairs by the Hawking effect but also perturb the horizon
under a dissipative quench. This phenomenology confirms
the potential of polaritonic quantum fluids for analogue
gravity: the tunability that was exploited to identify the
optimal configuration to observe the HE also provides novel
associated phenomena that emerge naturally. Typically, the
present interplay with QNMs was, to our knowledge, never
observed in similar configurations in conservative platforms
such as atomic condensates, while it is relevant to black holes
physics in general. Finally, our methods open the way to the
theoretical and experimental study of the quantum statistics
of the HE in driven-dissipative systems: for example, one
could calculate (and observe) the Hawking correlations
in reciprocal space [39]], thus gaining frequency-resolved
information on them [40] which could in turn be used to
measure entanglement [30} 31].
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APPENDIX
Appendix A: The physical system

Our system is a one-dimensional[66] quantum fluid of
exciton-polaritons whose flow velocity goes from being sub-
to super-sonic, thus forming a sonic horizon where the local
flow velocity of the fluid equals the local speed of sound. For
simplicity, we may consider that the horizon separates two
spatial regions whose properties are independent of space —
two homogenous regions, although we shall eventually depart
from this simplified picture. For now, we begin with the the-
oretical description of a homogeneous quantum fluid (of its
phase and density) and of the propagation of quantum (i.e.
small-amplitude density) fluctuations therein.

1. Polariton fluid and Bogoliubov excitations

Exciton-polaritons are quasi-particles resulting from the in-
teraction of light with matter in a semiconductor microcav-
ity. Photons emitted by a laser will be trapped in a cavity
formed by two Bragg mirror, wherein their dispersion is the
usual Fabry-Perot dispersion. These trapped photons create
excitons — bound electron-hole pairs — in the semiconduc-
tor microcavity. Strong coupling between the photons and
excitons trapped in quantum wells gives rise to two eigen-
states for the total Hamiltonian, known as the lower polari-
ton (LP) and upper polariton (UP) branches. Furthermore, the
Coulomb interaction between excitons results in an effective
non-linearity for exciton-polaritons (polaritons). The dynam-
ics of the mean-field are governed by a generalised Gross-
Piteavskii equation, which leads to Euler and continuity equa-
tions describing the system as a quantum fluid. Historically,
polaritons have first been described as two-dimensional quasi-
particles [67], although the theory may be reduced to one-
dimensional cavities called ‘wires’ [[L1} 51} 52} |68]], as in the
present case.

In the majority of cases, all energies involved are small
compared to the Rabi splitting so the exciton-polariton sys-
tem can be described by the mean field approximation [65].
At this level the system is described by a single scalar field U,
the field of lower polaritons, whose dynamics are governed by
the driven-dissipative Gross-Pitaevskii equation (GPE)

. _ hoo 2 .
10,V (z,t) = |wo 2m8“’ + Vi(x) + g|¥(x,t)| i5 v
+F,(x,1).
(AD)

wy is the frequency of the lower polaritons at the bottom of the
branch, m is their effective mass, V' is the ‘external potential’

(that is controlled via the interplay of the density profile of the
pump and the cavity’s own potential), g is the effective non-
linearity, y is the loss rate, I, is the field of the pump laser.
The field ¥(x, t) is written in the laboratory frame.

The description of the system as a fluid is supported by
the Madelung transformation: we write the field of lower po-
laritons as W(z,t) = /n(z,t)e?®!  insert this expression
into and multiply by e ~*/n, thus obtaining

e i, (\/ﬁew) = %i@tn — n0O.0,

e 902 (v/ne'®) = n(9,0)° + Vnd2V/n + 10, (nd.0).
(A2)
We write v = 29,6 and insert (A2) into (&), so that, by

taking the real and imaginary parts, we arrive at the Euler and
continuity equations for the polariton fluid [69]:

muv? h 8%\/n Re{Fpe_ie}
O + 0y (nv) = yn — 2Im{ Fe "} /n.
(A3)

The first equation of is the Euler equation of atomic
Bose-Einstein condensates (BECs) plus a term coming from
the coherent pumping. The second equation of (A3) is the
continuity of the flow with a loss term and a term coming from
the coherent pumping. We see that the properties of the fluid
depend on two parameters, namely its’ density n and phase 6.
The spatial variations of the phase is encapsulated in v, which
we identify from as the flow velocity of the fluid.

Now that we have described the polariton fluid in terms
of its” density and phase, we consider the propagation of
small amplitude fluctuations (such as quantum fluctuations)
of the density in this fluid — the so-called ‘Bogoliubov ex-
citations’. Bogoliubov excitations are mathematically ob-
tained by linearising the GPE (AI) around a background:
U — U+ 6V, and U* — U* + 6U*. L is the ‘Bogoli-
ubov matrix’ that describes the dynamics of the Bogoliubov
excitations (60, §U*): i, ((;5;!* =L 55\1\}!* .

In the steady state, the GPE (AT]) becomes

h .
o =y = 50+ V@) + gl i3 9(@) + Fyfo)

(A4)

where wy, is the frequency of the pump. We first consider a
configuration where the wire is pumped with a spatially ho-
mogeneous and monochromatic pump of incident wavevector
k,, (so there is no potential in Eq. (A1), V' (z) = 0). The phase
of the fluid is then set by, and equal to, k,, while its’ density is
homogeneous. The steady-state GPE (A4) simplifies to
g|\I/|2—Ap—z%}\II+Fp:O, (AS)
where A, is the ‘effective detuning’ defined as the difference
between the pump energy and that of lower polaritons,
2
hk,

Ap:wp—wo——.

o (A6)
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Figure 4. Dispersion curve of the polaritonic fluid in the frame
co-moving with the fluid. Real part of the dispersion (AS8) for a

pump vector k, = 0.25um™*. Blue, wf

Black dashed lines show the speed of sound.

=gn Ap,=gn
P=9". orange, w_""I".

We go to the reference frame co-moving with the fluid via a
Galilean transform (x — x — vt). In the special case of a ho-
mogeneous system where the interaction energy matches the
detuning, gn = A, the Bogoliubov matrix £ can be written
in this frame as

r— (9"t g—ﬁj +iy/2 gne?ike® A7
- —2ikya w2 | (A7)
gne gn + 5 —iy/

Upon diagonalization, we retrieve the Bogoliubov dispersion
relation in this co-moving frame, which relates the wavenum-
ber k of Bogoliubov excitations to their frequency w there:

Ap=gn hk? [ hk? .
P =44/ — | — +2 — 2.
wi \/Qm < + 2gn v/

2m

(A8)

Figure (] shows the real part of Eq. (A8), the ‘dispersion
curve’, which is identical to that of atomic BECs. There are
two branches w3? =" of the dispersion, which are symmet-
rical around the point w = 0, k = 0. At low k, the dis-
. . . Ap=gn .
persion curve has a linear slope: wy ﬁ csk, with
—

¢s = v/hgn/m the ‘speed of sound’ in the fluid. At large k,

p=9gn

-

. Lo . . A
the dispersion is that of free massive particles, w_ -
—00

hk? /2m. There, &uﬁ”:g " / Ok ’ > ¢, — the gradient of the

dispersion curve is larger than the speed of sound, so the dis-
persion is said to be ‘superluminal’ (in analogy with superlu-
minal corrections to the dispersion in eg [70} [71]).

2. Optical bistability of the polariton fluid

Unlike the configuration considered in the previous para-
graph, in the majority of cases the interaction energy does not
match the effective detuning and the dispersion curve is thus
modified. Furthermore, writing the density of the fluid as a
function of the intensity of the laser yields several solutions.
This degeneracy of fluid densities is due to optical bistabil-
ity, which, as we will show, has tremendous influence on the
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Figure 5. Bistability loop for an homogeneous polaritonic fluid.
wp —wo > 0and k, = 0. Black, stable points; dashed, unstable
points. The system is bistable for F> < |F,| < F and follows the
hysteresis cycle (1)-(4).

emission and propagation of excitations of the fluid, including
Bogoliubov excitations. Here we investigate the influence of
the bistability on the Bogoliubov dispersion.

We begin by describing the relationship between the density
of polaritons, n, and the intensity of the pump laser, |Fp|2 in
the case where the energy of the laser is above that of the lower
polaritons, A, > v1/3/2: we square Eq. (A3) and find

2
gl
|:(gn - A;D)2 + 4]n = |Fp|2
(A9)
mc? 2 72 | mc? 2
£ —A — 5 =|F,|".

The physics at play may be investigated equivalently in
terms of the relationship between the speed of sound and the
strength of the pump, as shown in Figure 5] At first, ¢, in-
creases slowly with |F},| (arrow (1)), until |F),| = F; where
it increases abruptly (arrow (2)). For |F,| > Fi, ¢ in-
creases slowly again. If the pump’s strength is decreased from
|Fp| > Fi, ¢ decreases slowly until |F,| = F; (atrow (3)),
where it falls abruptly (arrow (4)). Since F} > Fj, the ¢, to
|| relationship presents a histeresis cycle with two regimes
of speed of sound: the linear regime when |F,| < F; and
¢s is low, and the non-linear regime when |F},| > F5 and ¢,
is high. This histeresis cycle is the manifestation of optical
bistability [53]], so we will henceforth refer to it as the ‘bista-
bility loop’. Note that the dashed line in Fig. [5]is unstable and
the speed of sound will actually follow the hysteresis cycle
schematised by arrows (1) — (4).

Now, in order to explicitly show the dependence of the
Bogoliubov dispersion on the density of the fluid as well
as the influence of optical bistability thereon, we generalise
Eq. (A8): We diagonalise the Bogoliubov matrix £ for a ho-



mogeneous system pumped with arbitrary strength and obtain

wﬂm:i¢cw+%m_@9?4mp_mm

2m

(A10)
In Fig. [f] we show the dispersion curve for 5 different fluid
densities along the bistability loop. As can be seen in Fig. [f]
a) and b), the shape of the dispersion does not change much
in the linear regime: the two branches of the dispersion curve
cross. When the fluid is bistable, in Fig. |§| b), we observe
the appearance plateaus characteristic of an unstable fluid at
the crossing points — Goldstone modes [72]. On the other
hand, the shape of the dispersion curve changes significantly
in the nonlinear regime depending on the position along the
bistability loop: at high pump strength (Fig. [] e)), the two
branches are split in energy by a gap that increases with the
pump strength. The sonic dispersion relation (AS8) is recov-
ered at point C (Fig. [f] ¢)), while for slightly lower pump
strength (Fig. [6] d)), the plateau at low k is characteristic of
an unstable fluid (similarly to the Goldstone modes of Fig. [f]
d)) . Note that the dispersion curve has a linear slope at low
k (and thus a sonic interpretation) at point C' only, which is
thus sometimes referred to as the ‘sonic point’ of the bistabil-
ity. As Eq. (AT0) is of order four in k, the dispersion has four
complex roots. The real part of these roots is non-zero in the
linear regime (Fig. |§|a) and b)) as well as at points C' and C’
(Fig.[6]c) and d)), but not at point D (Fig.[6]e)).

In this appendix, we have seen that the mean-field of a po-
lariton system behaves as a fluid. We have studied the disper-
sion relation of Bogoliubov excitations in this fluid and seen
that optical bistability of the fluid strongly influences the prop-
erties of this dispersion relation. These considerations may be
generalised to a fluid whose density is not homogeneous.

3. Dispersion relation in the nonlinear regime

In Fig. [7| we plot the dispersion relation (2) of the inho-
mogeneous fluid in the laboratory frame when pumping at
point D of the bistability loop (see Fig.[f]e)): Fig.[T]a) and b)
show the dispersion of a sub- and super-sonic fluid flow, re-
spectively. Blue (orange) curves correspond to positive (neg-
ative) energy solutions of Eq. (AT0) in the frame co-moving
with the fluid. As usual in field theories in analogue gravity,
the modes with positive (negative) energies in the rest frame
of the fluid have positive (negative) Klein-Gordon norm [56].
For subsonic fluid flows, the negative norm branch is at neg-
ative laboratory frame energies, while for supersonic flows,
part of the negative norm branch is pulled up to positive labo-
ratory frame energies by the Doppler effect, up to a maximum
energy which we denote by w4, Note that the dispersion
up- and downstream features a gap between the positive- and
negative-norm branches. We denote the minimum energy of
the positive-norm branch in the upstream region by wyyy, -
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Figure 6. Bogoliubov dispersion for various fluid densities. Top
row: Eq.(AT0) is plotted in the fluid frame. a) and b), linear regime
of density; ¢), Goldstone modes; d), sonic dispersion; €) nonlinear
regime of density. Bottom, f), bistability curve for a homogeneous
fluid. A, linear; B, linear and bistable; C’, unstable; C, sonic point;
D nonlinear and bistable.
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Figure 7. Laboratory frame dispersion relation in the nonlin-
ear regime. Left (right) column, dispersion relation (2) for a sub-
sonic (supersonic) fluid flow. Blue, positive-norm branch; orange,
negative-norm branch. Circles, local modes of positive group veloc-
ity; filled dots, local modes of negative group velocity. Dot-dashed
line, wyqq; dotted line, wmin; dashed line wp. Pump strength and
speed of sound at point D in Fig.[6]

4. Global Modes of the system

In this appendix we explain how to construct the global
modes (GMs) of the system from the local modes (LMs) iden-
tified in the body of the article.

LMs in a homogeneous region may be sorted by their



respective group velocity v, = Ow4/Ok: those which
have positive group velocity propagate rightwards while those
which have negative group velocity propagate leftwards. We
proceed to construct modes of the inhomogeneous fluid, the
GMs [56 I57] — solutions to the equation of motion that are
valid in both regions on either sides of the interface. GMs cor-
respond to waves scattering at the interface, and they describe
the conversion of an incoming field to scattered fields in both
regions. The GMs are superpositions of the plane wave so-
lutions in the two homogeneous regions on either side of the
interface. We identify GMs via their ‘defining’ local mode.
Specifically, in the upstream region, the unique local mode
with positive group velocity defines an in GM wu;,,, while the
unique local mode with negative group velocity defines an out
GM uyys- In the downstream region, modes with negative
group velocity define in GMs dy;,, and da,,; and modes with
positive group velocity define out GMs d1y and dogq: [[73].
GMS Uiy, Uout, A1in and dy ¢ are positive-norm modes while
GMs dy;;, and dayy¢ are negative-norm modes.

Each in GM describes the scattering of a harmonic wave to
various outgoing harmonic waves. Conversely, each our GM
describes a single harmonic wave resulting from the scattering
of various incoming waves. The scattering can be described in
the in as well as the out basis, and the transformation between
the two bases defines the scattering matrix (see [35,156}157.[74]
for an analytical derivation of the scattering matrix). Because
the vacuum is basis dependent, spontaneous emission at the
horizon will occur in correlated pairs oyt —d1outs Yout —d20ut
and dy,y¢ — daoyt ON top of the classical background formed
by the polariton fluid (the mean-field).

Appendix B: Numerical method and correlation function

Our interest is in spontaneous emission, that is amplifica-
tion of the quantum vacuum fluctuations at the horizon (the
spontaneous Hawking effect). The quantum description of
the Bogoliubov excitations relies on the dispersion relation
of the classical field, Eq. (Z). In order to encompass quan-
tum effects, we use a quantum Monte-Carlo method called the
truncated Wigner approximation (TWA). In this method, the
Wigner distribution is truncated so as to map it to a stochastic
partial differential equation for a classical field :

. hod? .
idy = wO_dem?+V+g(|w|2_1/A$>_Z’2qwdt

o
4Ax aw

(B1)

+F,dt +

where dW is complex white noise. In numerical simulations,
sampling of the realisations obtained with (BI) starts when
the steady state is reached. One must ensure that enough time
is spent between each sampling to ensure independence of the
realisations. Quantum observables are computed with statis-
tical averaging over the realisations obtained with the TWA:
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the general rule for NV arbitrary observables is [75]]

O1-On)w =57 3

All
N -permutations

<EKOMHWON)>, (B2)

where (), denotes the statistical averaging over the realisa-
tions. Note that the TWA is valid at the level of the Bogoli-
ubov theory only.

Emission at the horizon by the Hawking effect is best
detected via nonlocal correlations in the fluid density [32].
These may be quantified via the normalised spatial correla-
tion function

G®(x,2")

(2) N —
97 (z,x ) G(l)(x)G(l)(l'/).

(B3)

G®@)(x,2') is the diagonal four-points correlation function of
the field, which is calculated from (B2)) and normally ordered
using Bose statistics:

G (z,2') = <\iﬁ(m)\iﬁ(x’)\il(x')\il(x)>

= (" ()0 (@)D V) — (1 G

(@ @ + 0 @0 - 755 )

(B4)
while the diagonal two-points correlation function is
G0 () = (¥ (@) (2)) = (" @)y — 55 (BS)
W oAz

In this Appendix we have shown how microcavity polari-
tons behave as a quantum fluid whose velocity is determined
by its phase, and in which the speed of sound is proportional
to the fluid density. We have studied the kinematics of Bo-
goliubov excitations in this fluid and identified the conditions
under which a transsonic fluid flow features a sonic horizon.
Correlated emission at the horizon by the Hawking effect may
be characterised by the correlation function, which is calcu-
lated from the output of numerical simulations with the TWA.

Appendix C: Influence of Optical bistability on emission by the
Hawking effect

In this Appendix we calculate spatial correlation spec-
tra across the horizon for various flow profiles (density and
phase) on either side of the horizon. Importantly, the detuning
wp —wp = 0.49 meV is kept constant throughout for compari-
son between simulations. Alternatively, the optical bistability
of the system could be tuned by varying the detuning while
keeping some other parameters constant. All spectra result
from 100 000 Monte-Carlo realisations.

As we have seen in Appendix it is possible to tune the
bistability of the fluid on either side of the horizon by control-
ling the wavevector (i.e. the phase) of the fluid in either region
by means of the pump (&, ,, or k;, 4 in the up- or downstream



region, respectively), while the fluid density may be supported
on the higher branch of the histeresis loop by means of the
Pigeon effect [76]. There are, roughly speaking, 6 different
points along the bistability loop (see Fig. [3), meaning that in
order to explore the full parameter space we have computed
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36 correlation spectra. Not all combinations are interesting,
though, so here we will only comment on spatial correlations
obtained with typical (and relevant) inhomogeneous flow pro-
files.

Bistability loop Velocity profile and pump Spatial g correlation function
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Table I: Spectra of correlated emission at the horizon. Left column, bistabil-
ity loop: solid black, upstream region; dashed gray, downstream region. Mid-
dle column, solid black, pump strength upstream (kp,.,); dashed black, pump
strength downstream (kp,4); blue, speed of sound; red, fluid flow velocity kp .
Right column, spatial g(2> correlation function @, colour scale from —1073

to 1073,

In Table[lwe plot the operation point on the bistability loop
of the fluid on either side of the horizon, the pump profile and
ensuing properties of the inhomogeneous fluid as well as the
resulting spatial correlations (B3). Here we describe in detail
each inhomogeneous fluid profile and the resulting correla-

tions.

[[HT} The fluid density is supported near the sonic point
in both regions, such that it is quite flat, with a phase
fixed by ky,,, = 0.25 um ™! and k, 4 = 0.545 pm 1, re-
spectively. Anti-correlations along the diagonal are of
large amplitude. The diagonal is broader in the down-
stream region than in the upstream region. The Hawk-
ing moustache ¢ — d24, is of amplitude 6 - 10~* and
is about 40 um- and 50 um-long in the up- and down re-
gions, respectively. The w,: — dl,,: correlations are
of amplitude 5 - 10~* and the trace is 25 um and 60 um
long in the up- and downstream regions, respectively.
The d1,,¢ — d24, correlations are of amplitude 8- 10~4
and the trace is 50 pum long. Furthermore, local, positive
correlations along the diagonal can be observed in both
the up- and downstream regions.

[H2} The fluid density is supported in the bistable regime
in the upstream region while it is supported in the non-
linear regime in the downstream region, with a phase
fixed by k., = 0.25pm™' and k, 4 = 0.58um™!,
respectively. The density of the fluid undulates in the
region 100 um ™~ after the horizon and stabilises after-
wards. The Hawking moustache is of amplitude 2-10~*
and is about 10um- and 20 um-long in the up- and
downstream regions, respectively. The wgys — dloyt
correlations are of amplitude 2 - 10~ and the trace is
20 pm and 20 uym long in the up- and downstream re-
gions, respectively. After 20 um, both up-downstream
correlation traces become dispersive. The d1 ¢ —d24q¢
correlation trace is not visible. Instead, it is masked by
a new, emergent feature in the downstream region — an
anti-correlation trace that begins at 20 um, which is fol-
lowed by a positive, local-correlations trace that starts

at 50 pm.

[I{3} The fluid density is in the highly-nonlinear regime
in the upstream region, while it is supported on the
upper branch of the bistable regim in the downstream
region, with a phase fixed by k,, = 0.25um~' and
kp.a = 0.535um™", respectively. The Hawking mous-
tache is of amplitude 2 - 10~* and is about 12 um- and
17 ym-long in the up- and downstream regions, respec-
tively. The wuyy: — dlyy: correlations are of ampli-
tude 9 - 1075 and the trace is 10 um and 25um long
in the up- and downstream regions, respectively. The
d1 oy — d20u; correlations are of amplitude 2-10~% and
the and the trace is 50 pm long. Furthermore, negative
correlations appear 30 um downstream of the horizon,
followed by positive correlations after 55 pm.

[} The fluid density is supported on the upper branch
in the bistable regime in both regions, with a phase fixed
by kp = 0.25um =" and k, 4 = 0.535um ™", respec-
tively. The fluid density is homogeneous in the up-
stream region but not in the downstream region where
it undulates. Note that, for reasons explained in ap-
pendix [F| the strength of the defect potential is 30%
lower than in all other configurations, yielding weaker
spontaneous emission. The Hawking moustache is of
amplitude 1-10~* and is about 12 um- and 17 um-long
in the up- and downstream regions, respectively. The
Uout — Aoy correlations are of amplitude 8 - 10~° and
the trace is 30 pm and 60 pm long in the up- and down-
stream regions, respectively. The d1,,s — d2,,; correla-
tions are of amplitude 3.5 - 10~* and the trace is 50 um
long. Furthermore, negative correlations appear 22 um
downstream of the horizon, followed by positive corre-
lations after 50 um.

[H5} The fluid density is supported on the upper branch
in the bistable regime in the upstream region (k, , =
0.25 um~1), while it is left to evolve ballistically in the
downstream region. The Hawking moustache is of am-



plitude 2 - 10~ and is about 20 ym- and 20 pm-long
in the up- and downstream regions, respectively. The
Ugyt — dlyyt correlations are of amplitude 1.3 - 10~
and the trace is 27 um and 60 pm long in the up- and
downstream regions, respectively. The dl,,; — d24¢
correlations are of amplitude 3 - 10~* and the is 120 ym
long.

In configuration [II] 2 3] and f] we see that emission oc-
curs even when the phase of the fluid is fixed by the pump in
order to support its density on both sides of the horizon. How-
ever, correlation traces in the North West quadrant are short in
these configurations, meaning that the propagation of Bogoli-
ubov excitations in the downstream region is limited when the
phase is fixed there. Furthermore, in configurations for which
the fluid density undulates in the downstream region ([[{3]and
M), other short positive- and negative-correlation traces ap-
pear well after the horizon. These correspond to spontaneous
emission from the vacuum on an effective spacetime without
a horizon but whose properties are not homogeneous [30].

Spontaneous emission also occurs when the density of the
fluid evolves ballistically in the downstream region, as in
configurations [I5] and in Figl2} and as in [L1} 51 52]. In
all these configurations, the downstream-downstream corre-
lations d1,,¢ — d2,,; as well as the the Hawking moustache
are clearly visible. However, in [L1, 51l], the wou: — dlout
correlations are not visible (if at all present), while they are
in [52]] and in Table. [If5] and in Fig2] In [51], it was estab-
lished that an effective cavity forms between the edge of the
(Gaussian) pump and the defect. The Bogoliubov excitations
in the upstream region form a standing wave in this effective
cavity, which in turn modulates the emission of negative norm
waves in the downstream region and thus that of the positive
norm companion wave as well. The resulting modulation of
the correlation pattern in the downstream region (North East
quadrant) was observed in both [11] and [51]]. This modula-
tion might be why the up-downstream o, — d1,,: are not
visible in these works.

So far we have established that operating with a density at
the sonic point of the bistability loop upstream of the horizon
enhances the propagation of Bogoliubov excitations in the up-
stream region. In configuration[IfI] we also consider the case
where the fluid density is also supported at the sonic point in
the downstream region. As observed before, the downstream-
downstream trace corresponding to d1,,: — d2,,,; correlations
is only of amplitude 8 - 10~#, which is overpowered by a
positive-correlation trace along the diagonal that stems from
local interactions (unlike the physics under study). Yet, the
up-downstream correlations are clearly visible and the two
traces are over 60 um long, which confirms that spontaneous
emission by the Hawking effect does occur. In comparison,
the Hawking moustache and all other correlation traces are
stronger and longer in Fig[2] So letting the fluid density evolve
ballistically in the downstream region enhances the emission
and propagation of Bogoliubov excitations there.
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Appendix D: Influence of the fluid properties near the horizon
on spontaneous emission

In the body of the paper, we have evidence the crucial role
of the control of the fluid density in the vicinity of the hori-
zon in the propagation of Bogoliubov excitations. This is con-
firmed in the analysis of Appendix|[C] In this Appendix, we in-
vestigate the influence of the fluid density in the vicinity of the
horizon on the emission of Bogoliubov excitations. Specif-
ically, we compute the density of Bogoliubov excitations in
the upstream region as a function of the fluid density before
the horizon.

As FigP] we create the fluid of polaritons by pumping in
the nonlinear regime far from the horizon in the upstream re-
gion. The fluid density is then supported at the sonic point un-
til a given distance from the horizon, where the pump strength
drops to zero abruptly. Thereafter, the fluid propagates ballis-
tically to the horizon and across it into the downstream region.
The fluid density is supported in the upstream region such that
it dips slightly where the pump strength drops, and then bumps
back up to the sonic point. In Fig.[D] we compute the density
of Bogoliubov excitations on top of the fluid,

(001 (@)0(2)) = (V@) ¥(@)) - [w@), O
for different distances between the pump and the horizon. We
see that the density of Bogoliubov excitations increases until
a distance of 10 pm. For short distances, the density is low
because the accumulation of the fluid between the pump and
the horizon forms a high bump where the density is above
the sonic point. For distances larger than 10 um, the fluid
density drops from the upper branch of the bistability loop
and no emission occurs. The width of the peak in the spec-
trum of Bogoliubov excitations is different from the distance
between the pump and the horizon. Note the difference be-
tween the density of Bogoliubov excitations in the up- and
downstream regions: the difference decreases from six-fold
for a 10 ym pump-horizon distance to less than three-fold for
a 7pm distance. This is mainly due to a decrease in the emis-
sion strength in the upstream region.

In Fig. D] we compute Eq.(DI)) and vary the fluid density
on top of the bump in the vicinity of the sonic point while
keeping the distance between the drop in the pump strength of
the horizon constant. We see that the density of Bogoliubov
excitations in the upstream region drops quickly as the fluid
density moves away from the sonic point. This indicates that
the Hawking effect is less and less efficient. As we have seen
before in Sec[A 2] the shape of the dispersion relation is highly
influenced by the fluid density along the bistability loop. Here,
we see that the dispersion curve quickly morphs from Fig. [6]
d) to Fig. E] e) and, as a result, the condition of momentum
conservation at the heart of the Hawking effect, the mixing of
modes of positive and negative norms at the horizon, is less
and less fulfilled.

In brief: Bogoliubov excitations are emitted in the upstream
region as long as the fluid density is supported on the upper
branch of the bistability loop in the vicinity of the horizon. In
this appendix, we have demonstrated that operating at exactly



Density of Bogoliubov excitations

Figure 8. Density of Bogoliubov excitations (DI)) in the vicinity of
the defect for various pump-horizon distance. k,,u = 0.24um ™.

the sonic point there strongly enhances spontaneous emission
and, in turn, propagation in the upstream region.

Appendix E: Fringes in the North-East, North-West and
South-East quadrants

As described in section [C] there are fringes along strictly
horizontal and vertical directions in the correlation spec-
tra in all configurations. These are visible in the South-
East and North-West (upstream-downstream) and North-East
(downstream-downstream) quadrants. Their anomalous corre-
lation is thus non-zero, which creates an interference pattern
in the ¢(® function [51]. As for the up-downstream fringes,
a non-dispersive medium yields only an anti-correlation trace
for uyyut — d24q¢ in this region, so features at an non-zero up-
stream location must be due to the dispersive nature of the
Bogoliubov spectrum — as in the simple case studied in [58]],
where a sinc modulation was observed along a g(?) (x = cst >
0,2’ < 0) line in the SE and NW quadrants.

Appendix F: Constraints on the calculations

All configurations in Table. [[ have been realised with the
cavity parameters of [11]. When exploring all possible con-
figurations of fluid density on either side of the horizon, some
constraints must be abode by.

The first constraint is on the upstream pump wavevector
kp.., for a fluid near the sonic point. The fluid is at the sonic
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point for

wp —wo — k2, /2m
Cy = P 0 p,u/ 7 (Fl)
m
together with the upstream condition v,, < ¢,, this yields an

upper bound for the upstream fluid flow velocity and thus for
the wavevector of the pump:

wp — wo > gmvi. (F2)
For the value of detuning used throughout this paper the upper
bound is around k,,,, = 0.28 um~". In most simulations, we
used ky, ., = 0.25 pm ™ in order to be close to the bound while
leaving a small interval for easier simulations.

Exploring all regimes of density in the downstream region
comes with some constraints as well: For instance, placing the
fluid in the upper part of the bistable regime as in configura-
tions [IH4] is easier for a large bistable interval F} — F5. Point
f in configuration [3]f) is obtained at

—wo — hk2 /2
cd:\/”” wo = Ik 4/ 2m (F3)

2m
and the width of the interval is then given by

Albistable — | ’mm|2 _ \Fp,mm\2

2
4 hk;d 1, y
g\ o, 27 (F4)

wp — wo — hk2 4/2m

39

The larger downstream wavevector k), 4 results in a larger in-
terval, thus rendering simulation at a wanted point along the
bistability loop easier. Nevertheless, a bistable regime exists
only if w, —wy > hkf) 4/2m, hence an upper bound on &, 4.

Furthermore, the speed of sound right after the defect, ¢ ¢
is fixed by the upstream parameters and the strength of the
defect, V.. Pumping in the upper branch of the bistability
requires

Wy, —wo — Bk2 ,/2m
cd>\/ b o~ Ik g/ 2m (F5)

m

This critical point needs to be below cg. ¢ for the fluid density
to be on the upper branch. Another possibility is to change
the value of cq. ¢, which can be achieved for a weaker defect
potential (energy conservation before and just after the defect
links Vy.r and cgeyr), as in configuration The choice of
different k, 4 in the simulation given in table [I| is a conse-
quence of all these constraints.
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Figure 9. Density of Bogoliubov excitations in the vicinity of the
defect for fluid densities near the sonic point. a): Eq. (DI)) for
various pump strength with k,,u = 0.24um™'. b): corresponding
fluid densities along the bistability loop.
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