Imaging using quantum noise properties of light
Jeremy B. Clark and Zhifan Zhou and Quentin Glorieux and Alberto M. Marino and Paul D. Lett

Opt. Express 20, 17050--17058 (2012)

Opt. Express 20, 17050--17058  (2012)

We show that it is possible to estimate the shape of an object by measuring only the fluctuations of a probing field, allowing us to expose the object to a minimal light intensity. This scheme, based on noise measurements through homodyne detection, is useful in the regime where the number of photons is low enough that direct detection with a photodiode is difficult but high enough such that photon counting is not an option. We generate a few-photon state of multi-spatial-mode vacuum-squeezed twin beams using four-wave mixing and direct one of these twin fields through a binary intensity mask whose shape is to be imaged. Exploiting either the classical fluctuations in a single beam or quantum correlations between the twin beams, we demonstrate that under some conditions quantum correlations can provide an enhancement in sensitivity when estimating the shape of the object.