Research Topics

“Superfluidity is one of the most striking manifestation of quantum many-body physics. Initially observed in liquid Helium, the realization of atomic Bose-Einstein condensates (BEC) has allowed detailed investigations of this macroscopic quantum phenomenon exploiting the precise control over the system parameters. In my group, we study superfluidity of light in hot atomic vapor with special interest on low dimensionality and beyond mean field effects.”


Quantum fluids of light are photonic counterpart to atomic Bose gases and are attracting increasinging interest for probing many-body physics quantum phenomena such as superfluidity. Two different configurations are commonly used: the confined geometry where a nonlinear material is fixed inside an optical cavity (proposed 30 years ago by Pomeau and Rica), and the propagating geometry where the propagation direction plays the role of an effective time for the system

Recently, my experimental research group focused on the propagating geometry inspired by pioneering works in photorefractive crystals and thermo-optic liquids. We developed a novel platform for fluids of light based on the spatial evolution of a continuous laser beam propagating in a hot atomic vapor under the paraxial approximation. Interestingly, this geometry allows for a mathematical mapping to the 2D Gross-Pitaevskii equation, where the local light intensity corresponds to the photon density and the spatial gradient of its phase to the velocity. The key point is that this system simulates the dynamics of a 2D quantum fluid where each transverse plan (x,y) at a given z is a time snapshot of the effective temporal evolution. In 2018, my group demonstrated the relevance of this approach, known as paraxial fluid of light, with the observation of a superfluid state of light.


Optomechanical signature of superfluidity

Superfluidity is the ability of a fluid to move without any friction. Landau proposed several experiments to demonstrate superfluidity including a rotating bucket (if a bucket of superfluid is rotated it would be expected that the fluid would remain stationary due to the fluid lack of friction with the bucket) or the fountain effect. There are several behaviours that can be said to be the hallmarks of superfluidity simply because they do not occur anywhere else in nature.

For fluid fluids of light, the standard way to probe superfluidity is by observing the absence of scattering when a fluid of light hits a potential defect, as recently demonstrated in my group
We are now focusing on a new way of testing light superfluidity. The goal of this experiment is to replace a fixed potential barrier by a movable defect and observe the optical feedback of the fluid on the defect itself. To take an hydrodynamic example, I will replace a fixed bridge pile in a superfluid river by a mobile branch of a tree and observe the movement of the branch. Our goal is to observe the first mechanical signature of superfluid behavior of light.


The Team

  • Quentin Glorieux, Associate Professor
  • Ferdinand Claude, PhD student
  • Murad Abuzarli, PhD student
  • Chengjie Ding, Post-Doc

Associated Publications

Observation of the Bogoliubov Dispersion in a Fluid of Light
Fontaine, Q. and Bienaimé, T. and Pigeon, S. and Giacobino, E. and Bramati, A. and Glorieux, Q.

Phys. Rev. Lett. 121, 183604 (2018)

Measurement of the Static Structure Factor in a Paraxial Fluid of Light Using Bragg-like Spectroscopy
Piekarski, Clara and Liu, Wei and Steinhauer, Jeff and Giacobino, Elisabeth and Bramati, Alberto and Glorieux, Quentin

Phys. Rev. Lett. 127, 023401 (2021)

Analogue cosmological particle creation in an ultracold quantum fluid of light
Jeff Steinhauer, Murad Abuzarli, Tangui Aladjidi, Tom Bienaimé, Clara Piekarski, Wei Liu, Elisabeth Giacobino, Alberto Bramati, Quentin Glorieux
arxiv:2102.08279 ,   (2021)

 - PDF download:

Taming the snake instabilities in a polariton superfluid
Ferdinand Claude and Sergei V. Koniakhin and Anne Ma\^itre and Simon Pigeon and Giovanni Lerario and Daniil D. Stupin and Quentin Glorieux and Elisabeth Giacobino and Dmitry Solnyshkov and Guillaume Malpuech and Alberto Bramati

Optica 7, 1660--1665 (2020)

Coherent merging of counterpropagating exciton-polariton superfluids
Boulier, T. and Pigeon, S. and Cancellieri, E. and Robin, P. and Giacobino, E. and Glorieux, Q. and Bramati, A.

Phys. Rev. B 98, 024503 (2018)